BELYI MAPS AND DESSINS D'ENFANTS LECTURE 13.5

SAM SCHIAVONE

CONTENTS

1

2

I.	(Im)primitive permutation groups
II.	(Im)primitive Belyi maps and permutation triples

I. (IM)PRIMITIVE PERMUTATION GROUPS

Recall that a permutation group G is a subgroup of S_d for some d, or more generally a subgroup of Sym(X) for some set X. The permutation group G is transitive if its action on $\{1, \ldots, d\}$ is transitive, i.e., given $i, j \in \{1, \ldots, d\}$, there exists some $\sigma \in G$ such that $\sigma(i) = j.$

Definition 1.

I.

- (1) Let G be a transitive permutation group on a finite set A. A block of G is a nonempty subset *B* of *A* such that for all $\sigma \in G$, either $\sigma(B) = B$ or $\sigma(B) \cap B = \emptyset$, where $\sigma(B) = \{ \sigma(b) : b \in B \}.$
- (2) *G* is primitive if the only blocks of *G* are are the trivial ones: the sets of size 1, and A itself. A permutation group that is not primitive is said to be imprimitive.

Remark 2. The idea is that if G is imprimitive, then we can partition 1, 2, ..., d, and G acts the same on any labels that are in the same part. In this way, we can understand the action of *G* on 1, ..., *d* through its action on the parts, which are fewer in number. In this way, we have in some sense reduced the problem to a smaller permutation group.

Example 3. Let $A = \{1, 2, 3, 4\}$. You'll show for homework that S_4 is primitive, but D_8 is not, where we consider D_8 as a subgroup of S_4 via its action on the four vertices of a square. [Do D_8 example in Magma, showing minimal partition.]

Lemma 4. Let G be a transitive permutation group on a finite set A.

(1) If B is a block and $a \in B$, then the set

$$\operatorname{Stab}_G(B) = \{ \sigma \in G \mid \sigma(B) = B \}$$

is a subgroup of G containing $\operatorname{Stab}_G(a)$.

- (2) If B is a block and $\sigma_1(B), \sigma_2(B), \ldots, \sigma_n(b)$ are the distinct images of B under elements of *G*, then these form a partition of *A*.
- (3) *G* is primitive if and only if for each $a \in A$, the only subgroups of *G* containing Stab_G(*a*) are $\operatorname{Stab}_G(a)$ and G itself, i.e., $\operatorname{Stab}_G(a)$ is a maximal subgroup of G.

Date: May 5, 2021.

Proof. Homework.

II. (IM)PRIMITIVE BELYI MAPS AND PERMUTATION TRIPLES

Given a Belyi map $\varphi : X \to \mathbb{P}^1$ of degree d, let $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$ be the corresponding permutation triple. In more detail: the map φ induces a monodromy representation ρ : $\pi_1(\mathbb{P}^1 \setminus \{0, 1, \infty\}) \to S_d$ via path lifting, and σ_0, σ_1 , and σ_∞ are the images of small loops around $0, 1, \infty$, respectively, under ρ . Let

$$G = \langle \sigma \rangle = \langle \sigma_0, \sigma_1, \sigma_\infty \rangle \leq S_d$$

be the monodromy group of φ , i.e., the image of ρ .

If *G* is imprimitive, we want to find its "primitivization," the associated permutation group on a minimal partition of $\{1, ..., d\}$ by blocks. This will produce new permutation triple σ' , corresponding to a new Belyi map. Here is the path to victory for this project.

- (1) For each Belyi map in the LMFDB, determine if its monodromy group is primitive or not.
- (2) If it isn't primitive, compute its primitivization and find the associated primitive Belyi map in the database.
- (3) Record which maps arise as lifts of which primitive Belyi maps.
- (4) Compare the equation of a Belyi map to the equation of its primitivization. Do we see any patterns?